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The stability of the motion of very extended dynamic systems can in many cases be stud- 
ied as a problem in the stability of long rods. Long rods and rod structures interacting 
with an internal or external stream of fluid are used extensively in practice. Under the 
action of an external force such rods may be susceptible to considerable displacements. It 
is thus desirable to use the necessary nonlinear relations when studying the dynamic behav- 
ior of such systems [i, 2]~ When the forces due to the interaction of the moving rod with 
the external stream of fluid are taken into account the problems are more involved than the 
traditional problems considered in the mechanics of rods. 

We have studied the conditions for technical stability [3-8] of a long rectilinear rod 
with a variable cross section during its longitudinal transportation in a moving ideal fluid. 
The process is described by a nonlinear system of three different equations in partial deriv- 
atives with inhomogeneous boundary conditions. Sufficient conditions were obtained for the 
technical stability of a system in finite and infinite intervals of time and with an asymp- 
totic technical stability. Conditions under which a system may lose stability are indicated. 
A formula is found for the critical velocity of a rod in a fluid. The results were obtained 
by comparison involving the Lyapunov method [4, 6-11]. 

i. Formulation of the Problem. We consider a long flexible rod AB with a variable 
cross section, whose axis is rectilinear in the initial state. Suppose that this rod is 
transported longitudinally in an ideal incompressible fluid for a given time I i = [to, K]c 
I ~ [to, +~) (to e 0, K = const > 0) along a horizontal rectilinear trajectory with a given 
velocity v. We consider the instantaneous configuration of the rod [2]. The rod is as- 
sumed to be a homogeneous isotropic solid, which is subject to nonlinear geometric: deforma- 
tion with small strains. We examine the case when a fluid flows past the rod, positioned 
asymmetrically relative to the stream of fluid. The resultant hydrodynamic force F then has 
the same direction as the stream. The force has two components: F c = (Fic, F2c, F3c) is the 
hydrodynamic drag force directed along the stream and ~p = (Fip, Fap, F3p) is the lift force 
directed perpendicular to the stream. We introduce the following notation for the rod: m(s) 
is mass per unit length as a function of s; p is the density of the material; S(s) is the 
area of any cross section as a function of s; ~ is the length; h is the average thickness; 
q = (ql, q2~ q3) is the vector of the applied external distributed forces: u(t, s) = {ui(t, 
s), u2(t, s), u3(t, s)} is the dimensional displacement vector of any point on the axial 
line; c = s~ is the dimensional scalar coordinate of any point of the undeformed axial line: 
s e D ~ [0, i]; t is a dimensionless time variable; ~ is the dimensional time; v is Poisson's 
ratio; E is Young's modulus; Pm is the force of the weight per unit length; PA is the Archim- 
edean buoyancy; and ~ is the thrust of the propulsive device. The leading end A of the rod 
has a swivel fastening with a propulsive device while a body ~ acts on the other end B in an 
equalizing manner relative to the horizontal; for this body we introduce the notation q H, 
pf, h, VH,~ A = gpfV~, and ~c, which are its weight, density, a characteristic linear parame- 
ter, volume, Archimedean buoyancy, and the distance between the center of mass of the body 
and the point B; g is the free fall acceleration. By e~0, %0, and %~ we denote an orthog- 
onal local system of unit vectors for the rod in the unperturbed state. The vector e~0~ is 
directed along the axial line of the rod and toward the transportation. Suppose that e~ 
e2, and % are the vectors of the orthogonal local system of coordinates in the instantane- 
ous configuration of the rod; e2, and % are direct along the principal axis of its cross sec- 
tion. The systems ei0 and e i (i = i, 2, 3) both have a right-handed orientation. In the 
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instantaneous configuration of AB we distinguish an arbitrary element of the rod dE, which 
is bounded by the cross sections E, c + ds. The origins 01 and 0~* of the systems el0 (i = 
i, 2, 3) and e i (i = i, 2, 3) in the unperturbed state of the rod coincide and are assumed 
to lie at the midpoint of the axial line of the element de. The radius-vector of O~* at any 
time z is r(~, ~) = r(e) ~ w(~, ~). Here r(c) is the radius-vector of O~ and w(~, c) is the dis- 
placement vector of O~ for any arbitrary position of Oy* in the instantaneous configuration. 
For any point of the axial line we have dr/d~ = 8w/Sz, d2r/d~ 2 = 8~w/8~ ~ The element de 
is acted on by an inertial force 

02W 
d J i n  = - -  m (e) ~ de, 

where the fact that v is a constant has been taken into account. In the general case an ele- 
ment of rod can be acted upon by a distributed force q and a moment D0 = (~i0, ~20, ~30), 
which are not associated with the stream, as well as by the hydrodynamic force F and the 
moment Da, which arise when the rod interacts with the external stream of fluid [2, 12, 13]. 
When the rod moves the hydrodynamic forces acting on it depend on the square of the relative 
velocity V0T of the stream [12, 13]: rot = v0--vl, v, = v +0w/~ is the velocity vector of 
the points on the axial line of the rod and v0 is the vector of the absoltue velocity of the 
stream. The hydrodynamic force can be represented as the sum of two forces: Fc = qn~q~ (q~ 
is directed along a tangent to the axial line of the rod, i.e., along the direction of el 
and qn is directed along the normal to the axial line, i.e., perpendicular to q~). In the 
general case the element of the rod has an angular velocity w and is acted on by the moment 
of inertia 

0 (Jto) ds. dMirl = -- 

We assume that c remains constant during the motion [12]. We write matrix J as 

J = PJo, Jo = J2 0 , 

0 J3 

where Ji (i = i, 2, 3) are the moments of inertia of the cross section with respect to the 
principal axis of the cross section (i = 2, i = 3) and the axial line of the rod (i = i). 
Suppose that the flexural center of the rod coincides with its center of gravity. We use 
the d'Alembert principle, whereupon we obtain 

av OQ (i.i) m(~) ~ - ~ + R ;  

o OM 
a--f(J~)=--g-~-e + e ~ •  ~ = ~ o + ~ .  ( 1 . 2 )  

Here R = R(v. ~, e) is the principal vector of all the external forces acing on the rod; Q is 
the vector of internal forces of the element of rod: Q = Q~e, ~ Q2e2-t- Q~%; Ql is the axial 
force and Q2 and Q3 are intersecting forces. The vector of the internal moments M =M1el + 
M2e 2 ~Mae 3 (M I is a torsional moment and M 2 and M 3 are bending moments). The vectors Q and 
M are statically equivalent to the respective stress vectors [2]. For rods of variable 
cross section m(s) = m0(O)n0(s) [n0(s) is a dimensionless function, m0(0) = 0S0, and So is 
the area of a fixed cross section]. The area of any cross section of the rod is S(s) = So" 
n0(s). Using the general equations (i.i) and (1.2), we write the equations of motion for 
the considered case in the projections onto the unit vectors ei0 (i = i, 2, 3). Correspond- 
ing to an arbitrary point Z outside the longitudinal axis, belonging to the cross section 
through the point 01 of the element de, in the instantaneous configuration is the vector U = 
U(c, ~, ~) of its displacement to the position Z* in the case of cubic strain. The radius- 
v e c t o r  o f  Z i s  R o ~ r(e) @ 11e2o ~ ~eao, a n d  t h a t  o f  Z* i s  R* = R ~ U ~ - r ( e ) - i - N e 2 o  ~-~e3o-~- U. 
The square of the infinitesimal distance between the two points in the initial configuration 
of the rod is dl ~ = de 2 ~ dN 2 + d$ 2 ~ dRndR o and that of the infinitesimal distance in the in- 
stantaneous configuration is 

OR* OR* OR* 
( d I * )  2 = dR*dR*,  dR* = ~ de + ~ d~ + ~ d~. 
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Writing the difference (ds a - ds 2 in terms of U on the one hand and in terms of the 
strain tensor sij (i, j = I, 2, 3) on the other hand, we find the representation of the com- 

ponents Eij by the relations of the derivatives 0U~g, aU/aN, #U~. The tensor of the stress- 

es oij (i, j = i, 2, 3) at the point Z* is given by the known relations of [2] in accordance 

with Hooke's law. The displacement vector is chosen in the form [2] 

= + + g,r 
(1.3) 

where a2, $3, b2, b3 are real coefficients, which characterize the small angles of rotation 
that generally depend on the variable e. The notation of U in the form (1.3) is consistent 
with the hypothesis of plane sections, namely: sections that are perpendicular to the axis 
of the rod prior to deformation remain plane, but no loner necessarily orthogonal to the 
axis of the rod. Indeed, with the approximation (1.3) we obtain an affine transformation 
of points lying in the plane of the section perpendicular to the axis of the rod before de- 
formation; as a result of the transformation in the instantaneous configuration these points 
are once again in one plane and straight-line segments are correspondingly transformed into 
straight-line segments. The approximation (1.3) ensures satisfaction of the deformation 
conditions 

g22 ~ g'33~ 8*23 ----: O. 

The condition sa3 = 0 also corresponds to the system of unit vectors e i (i = i, 2, 3) being 
orthogonal. We find the matrix of the transition from the basis e i (i = I, 2, 3) to the 
basis ei0 (i = i, 2, 3), 

I + Otvl /& a2 aa 0 a~ - -  a= 

= t + , h = - + , 

with which at a given velocity v we project gqs. (i.i) and (1.2) onto the axis of ei0 (i = 
i, 2, 3): 

m (e) a%- a a~ -- ~ ( L q )  + LR; ( l . 4 )  

P-~ (1.5) 
1~ : :  {Z? = ] r  i = 1, 2, 3}, ~ = (%,  % ,  %) .  

For the components Qi and M i we find expressions in terms of the displacements of the points 
of the cross sections of the rod. Then from (1.4) and (1.5) we obtain rather cumbersome 
equations in the displacements. We make the necessary simplifications for the case under 
consideration. We henceforth consider the inertia of the rotational motions to be insigni- 
ficant, i.e., we disregard the left sides of (1.5) and so assume that Da = 0 and Uz0 = 0 
(D20 and Ps0 are constants). We can ascertain that by necessity Mz= O. By assuming that 
the displacements in all three directions are the same in any section of the rod, we set 
a2 = a3 = b2 = bs = 0 we go over to relations for the forces and momenta expressed in terms 
of the displacements of the points of the axial line of the rod. Suppose that PH is the 
pressure of the fluid on the road at a depth H. When an external stream acts a curvature 
and additional distributed forces appear because of the variability of the cross section S 
and the strains. This is why in the simplifications of the equations we leave the term 
-PH(SS/SE)(~2w/as2), which corresponds to the internal forces of the rod. We ignore the 
terms of high orders of smallness. From (1.5) we find the relation between Qi and M i (i = 
2, 3). As a result, we have three equations of motion of the system in the displacements 
of the points on the axial line of the rod. Assuming that the transverse motions have 
little effect on the longitudinal motions, we obtain the boundary-value problem of the pro- 
cess under study, 

a2ul 02ul (t) 02Ul i On o Oul 

0 
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02•2 
0t 2 

02u3 __ 

Ot 2 

aau2 p(2) 02u2 a [au 1 Ou21 On o au 10u 2 Ou 2 
as t H ~ + al T~ t-67 "~ l 4- a~ as as ~ + a3 Ts  4- /2 ,  

alu 3 D(3) a2u3 o (o~ 1 au3~ Ou o au 1 0% , 0% 
(1.6) 

with the boundary conditions 

ul (t, s)i~=o O, i 1, 2 . 3 ,  0%~ 02% 0% 
Os 2 ]s=O Os2 Is=o as ls=l  

a2ul a2u2 03u2 02u2 02u3 
= - - c ~  4 - c  2, -- = 0 , - -  = n ,  , , - = 

Ot Is=l 032 IS~l Os3 ts=l Ot 2 Is=l 082 IS=l 
03u3 02//.3 

= n~ (ggf Vn - -  qn), Osa I~=~ = n2 - -  na (gPf VH - -  qn) I Ot 2 iS=l 

( 1 . 7 )  

and initial conditions 

Oui ( t, s) 
ui (t, s)l~= % = ki (s), at ,t=~o = gi (s), i = t ,  2,  3.  ( 1 . 8 )  

Here the dimensionless time is t = ~s in the first equation while in the second equa- 

On o Sol2. p~z ) tion it i s  t = ~ : ~ / ~ ,  in the third t = ~s P~) . Ono 1 .  p(~) p .  = 
= ~ - ~  ~ E n  o ' = ~ 2-~3a'  

On o Sol2 Sonolh Sohl" laR1 Sonohl Solh lSR1 leRl 14R2 
PH ~ E-~26; a l  - -  ia ; a2 . . . .  i~ ' aa = R--~a6; bl ---- I 7  ; bz = ~ ; ba = E-~26; i1 ESoT0/z6; /2 - E-~.~hS; la = 
14Ra . 

E ~ 6 '  R1 ---- Q - -  ql - -  F1; /{2 = q~ 4- F2; Ra = PA - -  Pm 4- qa - -  ['a; F i = Fie q- Fip (i ::: 1, 2, 3); 

c~ = qnl (SgT2ESB) -h  c2 = R~I(SEhSB)-*; n = qnla(SgT'-IaB)q; n, = l ~ h ~ ( 6 E I ~ h ) - i ;  n 2 = qnla(SgT 2EI~B)-~; 

n.~-- la(6EhI2B)q; 6 = ( t -  v ) [ ( i  4 - v ) ( t -  2v)]-1;  T i s  t h e  c h a r a c t e r i s t i c  i n t e r v a l  o f  t i m e  f o r  ~.  We 

a s s u m e  t h a t  t h e  p r o b l e m  ( 1 . 6 ) - ( 1 . 8 )  h a s  a u n i q u e  s o l u t i o n  f o r  g i v e n  g i ( s )  a n d  k i ( s )  ( i  = 1 ,  
2, 3). The boundary conditions (1.7) were obtained as follows. In the leading section A 
the boundary conditions correspond to a swivel fastening of the rod with a propulsive device. 
In section B the body H has a link to the rod along a plane perpendicular to the axis of 
the rod. We assume that ~ has two symmetry planes, which pass through the unit vectors (e~, 
e 3) and (%, e=); body ~ is assumed to be rigid. The center of mass C is on the line BC~ of 
intersection of these planes and $c = BC. The law of motion of point c is x~(t) = (e~- 
el0)$ ~ -- w(l, t). The inertial force of the translational motion 

qH d 2 x c  (IH 02w 
g dt 2 - -  g Ot21s=l" 

The inertial forces of the rotational motions and the angles of rotation for ~ are disregard- 
ed. We come to the conclusion that the torsional moment MI~ and the bending moment M3~ for 
H can set equal to zero. Applying the d'Alembert principle to ~ and carrying out manipula- 
tions, we obtain the conditions (1.7). 

2. Conditions for the Technical Stability of the States of a Transported Rod in a 
Fluid. We consider the vector functional 

g [u~, u 2, ua; t] = {Vi [ui, t], i = t ,  2, 3}, Vx [u~, t] = 
1 1 

= y ds I (~g l )2 -  (~1--~ F1) (0ul/2 (0Ul~2] y [{ 02u2~2 
t o, I + t ot / j' V2 [u2, tl = ds L t o, 2 } - 

o o 

1 

C a / +  t-aTS j, V~ ru~, tj = t o,~ j (A + ro  t ~ )  + 
0 

4- t ~ s  j '  7 ,  = sTp <~---;!, v,  = s~p \~-E-g~/' ~= = s~p t~-~-s; ' A = 

= s u p ( P ~ ) +  1~), k = l ,  2, 3, c 2 = ESon o(s) 6 
s 

(2.1) 

and the vector measure 
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I 

p(u)={9~(uO, i =  1,2,3}, 9~(u,) = sup(u,)-~ + t< os; + (  ot]] '  
0 

1 

p~(ui)=sup(u;)2+sup[~-fl q- ~[ds 0s2 ] -< <TY] J '  1 = 2 , 3 .  
o 

( 2 . 2 )  

For components of the vector function (2.1) we have the lower estimate 

V l [ u i ' t ] ~ + [ l  ~ ' ~ l ' Fi)]X (2.3) - ( tl > T [1 - ( E  
•  i = 2 ,  3, 

and the functionals Vilui, t[ are positive-definite with respect to the measure p(u) for 

0 ~ vi + Fi < i, i = I, 2, 3. The quantities ~i = 1 - (vi + Fi) (i = I, 2, 3) are small 
parameters; ~i e (0, i]. We assign the finite intervals of time I l = [to, L[-z], [-l = 

max{zz -I, ~2 -z, Dz-l}; L is a given, arbitrarily large constant, which characterizes the 
reliability of the system (L > 0). 

Definition i. The dynamic process described by the problem (1.6)-(1.8) is called the 
technical stability in a finite time interval I l with respect to a given measure p(u) if 
along the perturbed solution u(t, s) of the problem (1.6)-(1.8) for the vector V[u, t] with 
positive-definite components Vi[ui, t] (i = i, 2, 3) with respect to the corresponding com- 
ponents 9i(ui) (i = i, 2, 3) of the measure p(u) the conditions 

V~[u~(t, s), t l ~ P i ( t ) ,  t ~ f l ,  i = t, 2, 3, 

are satisfied only at the initial instant 

V~[ui(to, s), to]<Q.b~, t o ~ [I, i = t ,  2, 3, (2.4) 

where (2.5) is prescribed by the conditions (1.7), (1.8), and the bounded functions Pi(t) 
(i = i, 2, 3) defined in the domain 11 satisfy the conditions 

O<P~(t)<~C~, Ci = c o n s t > O ,  

P~(to)~bi,  b~ = c o n s t > O ,  i = 1, 2, 3. 

The functions Pi(t) (i = i, 2, 3), the constants Ci, b i (i = I, 2, 3), and I l are given be- 
forehand. 

Definition 2. The process (1.6)-(1.8) is called the technical stability in a finite 
time interval I, when the conditions of Definition 1 hold for any K r +~. If in this case 

tim Vi[ui(t,s),t] = 0, i = 1,2 ,3 ,  

t he  p r o c e s s  ( 1 . 5 ) - ( 1 . 8 )  i s  s a i d  to  be t e c h n i c a l l y  a s y m p t o t i c a l l y  s t a b l e .  

D e f i n i t i o n  3. The p r o c e s s  ( 1 . 6 ) - ( 1 . 8 )  i s  s a i d  to  be t e c h n i c a l l y  u n s t a b l e  in  a f i n i t e  
or infinite time interval for given constants b i and the functions Pi(t), when conditions 
(2.4) are satisfied a value t I ~ 11 or tl e I (t I > to) is obtained for the solution u(t, 
s), this value being such that at least one of the inequalities 

Vi[ui(t 1, s), t l ] > C i ,  C i = c o n s t > O ,  i = 1, 2, 3 

is satisfied. 

It follows from Definitions 1-3 that the conditions for technical stability differ sub- 
stantially from the Lyapunov stability properties in that not only is the system considered 
in any given finite time interval but also the constraints on the initial states of the pro- 
cess do not depend on the conditions of the prescribed majorization of the subsequent states 
of the process during the given time interval. The fact that the complete derivative of the 
Lyapunov functional on the basis of the boundary-value problem need not necessarily be nega- 
tive definite, in contrast to the case of Lyapunov stability, expands the range of values 
to the parameters of the process under study. 
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By virtue of (1.6)-(1.8) the total derivative of V[u~, u~, us; t] with respect to t 
has the form 

dt - - 2 t - ~ / ( t , t  ) c ~ - - c v - ~ ( t , t  ) -- ds ( " v + F ~ ) . ~ s o - - i ~ s +  
o 

- -  = - -  2n-d~(t, 1)b-FgT(t, 1)i-2 • - t \  ~ "  o 7  "o ~ ~ 1~ ~ ' ~t 

1 
lOU2fa 0 {Ou, Ouz] p~)O~u, OnoOu, Ou ~ Ou~ ] 

{l 

- -  ~ V  oto~ l'  

dV31%, t I _ o  n~o--i-ys(t , 1 ) +  n3-~(t ,  t) ( g g f V n - - q n ) - - ~ z - ~ ( t ,  it) • 
dt " 

02u8 
, ~ H  Os  2 - F  :<-~tz(t , l )  ~ 2  ds [ o t bt -~ \-~s ~s ] + - -  b~- ~s os os -{- 

o 

O~ ] 
+ b. ~ + t~ --  (7~ 

We d e n o t e  Eq. ( 2 . 5 )  on the  r i g h t ,  r e s p e c t i v e l y ,  
the parameters ~z = (cz, c2, v~, F!' PH(~)' f~) 
~3 = (nz, n=, ns, b~, b:, b3, vs, F~, PH(3), f~ 
consider the function 

(2.5) 

~ , 0% 02u3~ 

1 
by M l ( t ,  XI) ,  M2(t ,  ~2 ) ,  M3(t ,  X3), where 

, )~: = ( n ,  a l ,  a2,  a3,  v2,  F 2 ,  PH ( 2 ) ,  f 2 ) ,  
) c h a r a c t e r i z e  t he  s y s t e m  ( 1 . 6 ) - ( 1 . 8 ) .  We 

For the prescribed 
require satisfaction of 

~1  (t, ~1) = J ] [ I  (t, ~I) 2 (~t~__ t) 2 ~1 (~1 (t, S)), (I) i (t, ~ ' i )=  f]/fl (t, ~i) - -  

tq (ui (t, s)), i 2, 3. 
3 ( ~  -f- t)~ p~ = 

nonnegative functions r (i = i, 2, 3) that are 
the conditions 

integrable over t 

t ~ (  t, )~)I ~< O~(t), i =  1, 2, 3. 

We can choose  r  = e e l ( t )  [ a i ( t )  a r e  c o n t i n u o u s  f u n c t i o n s ,  t e %1 c y ] ,  in  p a r t i c u l a r  we 
t 

s e t  a i ( t )  = 1 / ( ~ i  + t )  or  a i ( t )  = - 2 / ( ~  i + t ) .  We i n t r o d u c e  t he  n o t a t i o n  a i ( t )= . f@~(~ ) _  c a n  dv 
t o 

( i  = 1, 2, 3 ) .  We c o n s i d e r  t h e  f u n c t i o n s  z i ( t )  = V i [ u i ( t ,  s ) ,  t ]  - ~ i ( t )  ( i  = 1, 2, 3) 
a long  t h e  s o l u t i o n s  of  the  p ro b l em ( 1 . 6 ) - ( t . 8 ) .  The e s t i m a t e s  f o r  d V i / d t  ( i  = 1, 2, 3) 
a long  t h e  s o l u t i o n s  of  t h i s  p ro b l em l e a d  to  t h e  s y s t e m  o f  i n e q u a l i t i e s  [9 -11]  

dz~ ( t) 
dt ~ ! . [zi (t) • zt (t)], i : I 2, 3. ( 2 . 6 )  (~ + t)o 

E q u a t i o n  ( 2 . 6 )  i n f e r s  Cauchy co mp ar i so ns  of  t he  form 
dYt 1 
- ~  = (i*~ + t) ~ [Yi + ai (t)], t ~ I i ,  i = 1, 2, 3; ( 2 . 7 )  

Yi (to) = yO> V~ [ui (to, s), to], t o ~ II, i = t, 2, 3. ( 2 . 8 )  

The functions appearing in Vi[ui(t0, s), t o ] were determined by conditions (1.7), 
problem (1.6)-(1.8). In region Il problem (2.7), (2.8) has a continuous solution 

t 

y~ (t) = exp [-- l/(p~ + t)l ~ exp ll/(ta~ + T)] ~ (~) d~ + go exp [t/(p~ + t)] x 
t o 

(1.8) of 

• exp [-- tI(p~ + t)]--- ~i (t), i = I, 2, 3. 
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From the theorem of differential inequalities [Ii] we find 

zi(t) <~ yi(t) ,  i = t ,  2, 3, t ~ I~. 

Along the solution of problem (1.6)-(1.8) we have the estimates 

t 

Vi [ui (t, s). l] ~ Pl (t), P~ (t) ~- exp [-- t/(,ui + t)] .! exp ['l/Qti + x)] >< 
t o 

>< qb~ (~) dx + go exp [t/(pi + to) ] exp [-- t/(p~ + t)], t o, t ~ I1 ,  i ~-  1, 2, 3. 

Suppose  t h a t  t h e  f u n c t i o n s  4 i ( t )  s a t i s f y  t h e  c o n d i t i o n s  
t 

(~)~ (~) ~_~p [~, (u~ + ~)1 d~ ~< M~ (~,~ + L~-~)  ~ { ~ p  [~/(~ + to)t - -  
t o 

- - exp [ t / ( u~  + L~-O] ] ,  t o , t e l , ,  i =  1 ,2 ,3 ,  

( 2 . 9 )  

where the prescribed constants M i satisfy the condition IMi(t, %i)I ~ Mi, i = i, 2, 3. 
Hence we obtain the system of estimates 

p~ (t) ~ c~ --= ~& ( ~  + L~-~)  ~ + N ~,p [1/(~ + to)}, to, t ~ %, ~ = t, 2, 3. 

By v i r t u e  o f  ( 2 . 8 ) ,  ( 2 . 9 ) ,  t h e r e f o r e ,  t h e  p r o c e s s  ( 1 . 6 ) - ( 1 . 8 )  i s  t e c h n i c a l l y  s t a b l e  in  r e -  
g i o n  11 with respect to the measure p(u). When the boundary-value problem (1.6)-(1.8) is 
determined in any interval I l c_ I and estimates (2.8), (2.9) are valid in each region 11 _c 
I, the process is technically stable in an infinite time interval. In particular, we have 

! 

this property of the process when the integrals ~ exp[1,1(~i + m)]Obi(x)dT (i = i, 2, 3) are continu- 
t o 

ous functions in any interval I l _c I and increase in each Iz c_ I no faster than the corre- 
sponding functions 

t 

Ni f (p~ + T) -2 exp [t/(p~ + T)] dT, fV i = const > 0, Ni ~ M{, ~ = l, 2, 3. 
t o 

Satisfaction of the conditions 

o r  

t 

exp [-- t/(~ti + t)] ~> S exp [l/(p~ + ~)] cDi (~) dT, 11 ~ I ,  i = l, 2, 3, 
t o 

t 

exp [1/(~ + t)] ~ .[ exp [11(~ + t)] qbi (x) dr, i ,  ~ I,  i = i, 2, 3, 
t o 

e n s u r e s  t h e  t e c h n i c a l  s t a b i l i t y  o f  t h e  i n i t i a l  p r o c e s s  ( 1 . 5 ) - ( 1 . 8 )  in  an i n f i n i t e  t i m e  i n -  
t e r v a l  if in Mi(~i + L~-l) 2 _> i, or when 

Pi (t) ~.  go exp [I/(pi + to)] + 1 ~ Ci, t o, t ~ I ,  i = I, 2, 3. 

If in addition to the technical stability of the process (1.6)-(1.8) the conditions 

P~( t ) -+O,  t - - + +  oe, i = 1 , 2 , 3 ,  ( 2 . 1 0 )  

are satisfied in region I, then the initial process is technically asymptotically stable 
with respect to the measure p(u). In particular, (2.10) obtains, if 

t 

exp [-- t/(p~ + t)] ~ exp [t/(th q: T)] (Ih ( J  d~-+ --  go ex~) [ i / (~  + to) b 
t o 

t--~ + ~ ,  i =: t ,  2, 3. 

The indicated conditions for the technical stability of the system are violated if the 
velocity of the rod and the external forces acting on the rod satisfy the system of inequali- 
ties 
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since in this case the positive definiteness condition (2.3) for the functional (2.1) is not 
satisfied. But this is insufficient for the system to be unstable. It is technically un- 
stable in I l or in I if in these regions the respective majorants Pi(t) in (2.9) satisfy 
the conditions 

P~(t)-+ ~-~, i=  l, 2, 3. (2.12) 

in particular, (2.12) obtains for to = 0 and arbitrary t ~ 0 when ~i § 0 (i = i, 2, 3), 
as follows from determination of Di(i = i, 2, 3), this is possible when the velocity of the 
rod in the fluid tends toward a critical value Vcr, which also applies in similar fashion to 
the external forces acting on the rod, since these quantities increase simultaneously. In 
the given case Vcr in an ideal fluid is determined by the inequalities (2.11): 

Ono\ 
z~r = [3ESonohf J 3 6 -  f213 (R112 + Soh6P~-d7 ) -- 

(2 .13)  
_ _  - -  2t anon] ~n~ ( H~14 + PHSoI ~"~s)] X SonoI2 (R21' § PHSot~h ~ )  Sono/3 

X [mle (tJa + ISonohI2 § lSonohIz] -a. 

For example, Vcr = 38 km/h for ~ = 2 km, Vcr = 53 km/h for ~ = 1 km, and Vcr = 75 km/h for 
= 0.5 km for the corresponding other parameters in (2.13). 
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